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Abstract. Type-driven program synthesis is concerned with automatic
generation of programs that satisfy a given specification, formulated as a
type. One of the key challenges of program synthesis lies in finding candi-
date solutions that adhere to both the specification and the user’s intent
in an actionable amount of time. In this work, we explore how linear
types allow for precise specifications suitable for synthesis, and present
a framework for synthesis with linear types that, through the Curry-
Howard correspondence, leverages existing proof-search techniques for
Linear Logic to efficiently find type-correct programs.
We implement the synthesis framework both as a standalone language
which supports classical linear types extended with recursive algebraic
data types, parametric polymorphism and basic refinements; and as a
GHC type-hole plugin that synthesises expressions for Haskell program
holes, using the recently introduced linear types feature – showing it can
generate precise solutions, remarkably fast.
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1 Introduction

Program synthesis is the automated or semi-automated process of deriving a
program, i.e. generating code, from some (high-level) specification. Synthesis
can be seen as a means to improve programmer productivity and program cor-
rectness (e.g. through suggestion and autocompletion). Specifications can take
many forms such as natural language [7], examples [8] or rich types such as
polymorphic refinement types [19] or graded types [10]. Regardless of the spec-
ification form, program synthesis must address two main sources of complexity
– searching over the space of valid programs, and interpreting user intent.

Type-driven synthesis leverages rich types to make specifications more expres-
sive and prune the valid programs search space, while maintaining a “familiar”
specification interface (types) for the user. For instance, the type Int → Int → Int
can be viewed as a specification, but there are an infinite number of functions
that instance this type/satisfy this specification – it is extremely imprecise. On
the other hand, the refinement type (x:Int) → (y:Int) → {z:Int | z = x + y}
precisely specifies a function that adds its two arguments.

Linear types are another form of rich types that constrains resource usage
in programs by statically limiting the number of times certain resources can be
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used during their lifetime; in particular, linear resources must be used exactly
once. Linearity allows us to concisely describe interesting functions, since we
can easily specify which arguments must be used exactly once in the body of
a function. For example, the type of the linear map function (using Haskell
syntax), map :: (a ⊸ b) → [a ] ⊸ [b ], specifies a function that, given a linear
function from a to b, must consume the list of as exactly once to produce a
list of bs, which can only be done by applying the function to each element. A
linearity-aware program synthesizer can take the map type as a specification to
unambiguously produce:

map f ls = case ls of
[ ] → [ ]
(x : xs) → f x :map f xs

Another example is the more challenging array :: Int → [(Int, a)] → Array a goal
taken from Linear Haskell [2], which is implemented in terms of a linear interface
to mutable arrays. Remarkably, that linear interface is also precise enough that
our framework is capable of synthesizing the correct implementation (§ 4).

However, it is not at all obvious how to automate such a synthesis procedure
in a general setting where functions can make use of recursion, algebraic data
types and pattern matching. For instance, any naive approach that simply iter-
ates over all possible programs (of which there are infinitely many) and checks
them against the given specification (i.e., type-checking) would be very unlikely
to find a function that matches the user intent in a reasonable time frame.

Synthesis with linear types, combined with other advanced typing features,
has generally been overlooked in the literature, despite their long-known poten-
tial [20,4,2] and strong proof-theoretic foundations [1,6,5]. One aspect that makes
linear types particularly appealing from the point of view of program synthesis
is how linearity can affect the search space of valid programs: all programs where
a linear resource is used non-linearly (i.e. not exactly once) are ill-typed and can
be discarded. With linearity built into the synthesis process, usage of a linear
variable more than once is not considered, and unused variables are identified
during synthesis, constraining the space of valid programs.

In this work we explore type-based synthesis of functional programs using
linear types under the lens of the Curry-Howard correspondence. Notably, we
employ techniques from linear logic proof search as a mechanism for program
synthesis, leveraging the proofs-as-programs connection between linearly typed
functional programs and linear logic proofs. Our contributions are as follows:

– We present a framework for synthesis of functional programs (§ 2.1) from
specifications based on linear types, leveraging established proof-search tech-
niques for linear logic under the lens of the Curry-Howard isomorphism.
Specifically, the core of the synthesis procedure is a sound and complete sys-
tem consisting of bottom-up proof-search in propositional linear logic, using a
technique called focusing [1]. Our approach, being grounded in propositions-
as-types, ensures that all synthesized programs (i.e. proofs) are well-typed
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by construction (i.e. if the synthesis procedure produces a program, then the
program intrinsically satisfies its specification).

– We extend the core synthesis framework and language with algebraic data
types, recursive functions, parametric polymorphism and type refinements.
These extra-logical extensions require us to abandon completeness and to
develop techniques to effectively explore the search space in the presence of
recursion (§ 3).

– We present two implementations of our synthesis framework [15,14], one as
a GHC plugin that synthesizes expressions for Linear Haskell [2] program
holes, the other in a standalone language with the same features the synthesis
process supports, and benchmark them on diverse synthesis goals (§ 4).

2 Synthesis as Proof Search

The Curry-Howard correspondence [21] describes the fundamental connection
between logic and programming languages: propositions are types, and proofs
are programs. Under this lens, we can view bottom-up proof-search as program
synthesis – starting from a goal proposition A, finding a proof of A is exactly
the process of generating a program of type A.

Typically, the Curry-Howard correspondence is developed between so-called
systems of natural deduction and core functional languages such as the λ-
calculus, where logical rules have a direct, one-to-one, mapping to typing rules.
However, even though proofs in natural deduction can be interpreted as pro-
grams, a natural deduction proof system does not directly describe an algorithm
for proof search. An example that highlights this is the modus ponens rule from
intuitionistic logic (below on the left) and its analogous function application
typing rule from the simply-typed λ-calculus (below on the right):

Γ ⊢ α → β Γ ⊢ α

Γ ⊢ β
(mp)

Γ ⊢ M : α → β Γ ⊢ N : α

Γ ⊢ M N : β
(→E)

If we interpret the rules bottom-up we can see the modus ponens rule as “to
find a proof of β under assumptions Γ , find a proof of α → β and a proof of
α with the same assumptions, for some α”. However, an algorithm based on
these rules would have to invent an α for which the proof can be completed,
with no obvious relation between α and the goal β. In essence, inference rules
in natural deduction are ill-suited for bottom-up proof-search since not all rules
have an algorithmic bottom-up reading. A more suitable candidate for bottom-up
proof search system is the equivalent sequent calculus in which all inference rules
can be naturally read in a bottom-up manner. The corresponding implication
elimination (or function application) rule is instead:

Γ, f :α → β, x:β ⊢ M : τ Γ, f :α → β ⊢ N : α

Γ, f :α → β ⊢ M [f N/x] : τ
(→ L)

which can be understood bottom-up, through the lens of synthesis this time, as
“to synthesize an expression of type τ when f :α → β is in the context, synthesize
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an argument N of type α, and an expression M :τ assuming x:β in the context –
then replace occurrences of x by f N in M”. Nevertheless, a sequent calculus is
still not completely suited for proof search due to non-determinism in selecting
which rules to apply (e.g. if multiple function types are available in the context,
which should we attempt to use?).

Andreoli’s focusing [1] is a technique that further disciplines (linear logic)
proof-search by reformulating the rules of the sequent calculus. Focusing reduces
the non-determinism inherent to proof search by leveraging the fact that the
order in which certain rules are applied does not affect the outcome of the search,
and by identifying the non-determinism in the search process that pertains to
true unknowns (i.e., rules whose application modifies what can be subsequently
proved) – marking precisely the branches of the search space that may need
to be revisited (i.e., backtracked to). A focused sequent calculus can hence be
effectively read as a procedure for proof search for (a significant fragment of)
linear logic that turns out to be both sound and complete – a sequent is provable
if and only if it is derivable in the focused system.

Our core synthesis framework thus comprises of a reading of focused proof
search in (intuitionistic) linear logic, where proofs are seen as programs in a
linearly-typed λ calculus. In linear logic, propositions are interpreted as resources
that are consumed during the inference process. Where in standard propositional
logic we are able to use an assumption as many times as we want, in linear logic
every resource (i.e., every assumption) must be used exactly once, or linearly. In
the remainder of this work we will move interchangeably from linear propositions
to linear types. As an example, consider the typing rules for the linear function
(⊸), the linear counterpart to the standard function type; linear product (⊗),
related to the standard product type; and linear variables:

(⊸R)

∆,x:A ⊢ M : B

∆ ⊢ λx.M : A ⊸ B

(⊗ R)

∆1 ⊢ M : A ∆2 ⊢ N : B

∆1,∆2 ⊢ (M,N) : A⊗B

(var)

x : A ⊢ x : A

The rules define the judgment ∆ ⊢ M : A, stating that term M has type A using
linear variables in ∆. Rule (⊸R) explicates that to type a λ-abstraction λx.M
with type A ⊸ B, the body M must use x exactly once with type A to produce
B. Note how the variable rule enforces the exact usage since no other ambient
variables are allowed. This is also observed in the (⊗ R) rule, which states that
to type the linear pair (M,N) with A⊗B, the available resources must be split
in two regions (∆1 and ∆2), one that is used in M and the other, disjointly, in
N (the logical rules can be obtained by omitting the terms). Unlike in standard
propositional logic, where assumptions can be weakened and contracted (i.e.,
discarded and duplicated) and so can simply be maintained globally as they are
introduced in a derivation, in linear logic assumptions cannot be weakened or
contracted and thus a system of resource management [5,11] is combined with
focusing in order to algorithmically track linear resource usage.

We now present in detail the techniques that make up our synthesis frame-
work based on linear types. We first introduce the core of the synthesizer (§ 2.1)
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which is a more or less direct interpretation of focusing as proof search; which we
soundly extend (§ 3) with extra-logical but programming-centric features such
as general recursion and abstract data types (necessarily abandoning complete-
ness). We note that a sound set of rules guarantees cannot synthesize ill-typed
programs; and that the valid programs derivable through them reflect the sub-
jective trade-offs we committed to in order to produce an effective synthesizer.

2.1 Core Language

Core Rules. The core language of our framework is a simply-typed linear λ-
calculus with linear functions (⊸), additive (&) and multiplicative (⊗) pairs
(denoting alternative and simultaneous occurrence of resources, respectively),
multiplicative unit (1), additive sums (⊕) and the exponential modality (!),
which internalizes unrestricted use of variables. The syntax of terms (M,N) and
types (τ, σ) is given below (we highlight the type for which the terms in a given
line form the introduction and elimination forms, respectively):

M,N ::= u, v
| λx.M | M N (⊸)
| M &N | fst M | snd M (&)
| M ⊗N | let u⊗ v = M in N (⊗)
| ⋆ | let ⋆ = M in N (1)
| inl M | inr M | (case M of inl u ⇒ N1 | inr v ⇒ N2) (⊕)
| !M | let !u = M in N (!)

τ, σ ::= a | τ ⊸ σ | τ & σ | τ ⊗ σ | 1 | τ ⊕ σ | !τ

In intuitionistic sequent calculi, each connective has a so-called left and a
right rule, which effectively define how to decompose an ambient assumption of
a given proposition and how to prove a certain proposition is true, respectively.
In a focused sequent calculus we further identify so-called invertible and non-
invertible inference rules. Andreoli [1] observed that the connectives of linear
logic can be divided into two categories, dubbed synchronous and asynchronous.
Asynchronous connectives are those whose right rules are invertible, i.e. they can
be applied eagerly during proof search without altering provability (and so the
order in which these rules are applied is irrelevant) and whose left rules are not
invertible. Synchronous connectives are dual. The asynchronous connectives are
⊸ and & and the synchronous ones are ⊗,1,⊕, !.

Given this separation, focusing divides proof search into two alternating
phases: the inversion phase, in which we apply all invertible rules eagerly, and
the focusing phase, in which we decide a proposition to focus on, and then apply
non-invertible rules, staying in focus until we reach an asynchronous/invertible
proposition, the proof is complete, or no rules are applicable, in which case the
proof must backtrack to the state at which the focusing phase began. As such,
with focusing, the linear sequent calculus judgment Γ ;∆ ⊢ M : A, meaning that
M : A is derivable from the linear assumptions in ∆ and non-linear assumptions
in Γ , is split into four judgments, grouped into the two phases.
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For the invertible phase, a context Ω holds propositions that result from
decomposing connectives. The right inversion and left inversion judgments are
written Γ ;∆;Ω ⊢ M : A ⇑ and Γ ;∆;Ω ⇑ ⊢ M : A, where the ⇑ indicates the
connective or context being inverted. For the focusing phase (all non-invertible
rules can apply), the proposition under focus can be the goal or one in Γ or ∆.
The right focus judgment is written Γ ;∆ ⊢ M : A ⇓ and the left focus judgment
Γ ;∆;B ⇓ ⊢ M : A, where ⇓ indicates the proposition under focus.

As alluded in the previous section, to handle the context splitting required
to prove subgoals, we augment the judgments above using Hodas and Miller’s
resource management technique [5,11] where a pair of input/output linear con-
texts is used to propagate the yet unused linear resources across subgoals; e.g.
the left inversion judgment is written Γ ;∆/∆′;Ω ⇑ ⊢ M : A where ∆ is the
input linear context and ∆′ is the output one.

Combining linear logic (i.e., the linear lambda calculus through the Curry-
Howard correspondence), resource management, and focusing, we obtain the
following core formal system1 (inspired by [6,18]) – in which the rule ⊸R is
read: to synthesize a program of type A ⊸ B while inverting right (the ⇑ on
the goal), with unrestricted context Γ , linear context ∆, and inversion context
Ω, assume x:A in Ω to synthesize a program M of type B, and return λx.M .
We begin with right invertible rules, which decompose the goal until it becomes
a synchronous proposition:

Γ ;∆/∆′;Ω, x:A ⊢ M : B ⇑ x /∈ ∆′

Γ ;∆/∆′;Ω ⊢ λx.M : A ⊸ B ⇑
(⊸ R)

When we reach a non-invertible proposition on the right, we start inverting the
Ω context. The rule to transition to inversion on the left is:

Γ ;∆/∆′;Ω ⇑ ⊢ M : C C not right asynchronous

Γ ;∆/∆′;Ω ⊢ M : C ⇑
(⇑R)

We then apply left invertible rules for asynchronous connectives, which decom-
pose asynchronous propositions in Ω:

Γ ;∆/∆′;Ω, y:A, z:B ⇑ ⊢ M : C y, z /∈ ∆′

Γ ;∆/∆′;Ω, x:A⊗B ⇑ ⊢ let y ⊗ z = x in M : C
(⊗L)

Γ, y:A;∆/∆′;Ω ⇑ ⊢ M : C

Γ ;∆/∆′;Ω, x:!A ⇑ ⊢ let !y = x in M : C
(!L)

When we find a synchronous (i.e. non-invertible) proposition in Ω, we simply
move it to the linear context ∆, and keep inverting on the left:

Γ ;∆,x : A/∆′;Ω ⇑ ⊢ M : C A not left asynchronous

Γ ;∆/∆′;Ω, x : A ⇑ ⊢ M : C
(⇑L)

1 For the sake of brevity, we’ve omitted some rules such as those for the additive pair
and disjunction.
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After inverting all the asynchronous propositions in Ω we reach a state where
there are no more propositions to invert (Γ ′;∆′; · ⇑ ⊢ C). At this point, we want
to focus on a proposition. The focus object will be: the proposition on the right
(the goal), a proposition from the linear ∆ context, or a proposition from the
unrestricted Γ context. For these options we have three decision rules:

Γ ;∆/∆′ ⊢ M : C ⇓ C not atomic

Γ ;∆/∆′; · ⇑ ⊢ M : C
(decideR)

Γ ;∆/∆′;x : A ⇓ ⊢ M : C

Γ ;∆,x : A/∆′; · ⇑ ⊢ M : C
(decideL)

Γ,A;∆/∆′;A ⇓ ⊢ M : C

Γ,A;∆/∆′; · ⇑ ⊢ M : C
(decideL!)

The decision rules are followed by either left or right focus rules. To illustrate,
consider the ⊸L left focus rule. The rule states that to produce a program of
type C while left focused on the function x of type A ⊸ B, we first check that
we can produce a program of type C by using B. If this succeeds in producing
some program M , this means that we can apply x to solve our goal. We now
synthesize a program N of type A, switching to the right inversion judgment (⇑).
To construct the overall program, we replace in M all occurrences of variable y
with the application xN . The remaining left rules follow a similar pattern. The
right focus rules are read similarly to right inversion ones, albeit the goal and
sub-goals are under focus (except for !R).

Γ ;∆/∆′; y:B ⇓ ⊢ M : C Γ ;∆′/∆′′; · ⊢ N : A ⇑
Γ ;∆/∆′′;x:A ⊸ B ⇓ ⊢ M{(xN)/y} : C

(⊸ L)

Γ ;∆/∆′ ⊢ M : A ⇓ Γ ;∆′/∆′′ ⊢ N : B ⇓
Γ ;∆/∆′′ ⊢ (M ⊗N) : A⊗B ⇓

(⊗R)
Γ ;∆/∆ ⊢ ⋆ : 1 ⇓

(1R)

Eventually, the focus proposition will no longer be synchronous, i.e. it’s atomic
or asynchronous. If we’re left focused on an atomic proposition we either instan-
tiate the goal or fail. Otherwise the left focus is asynchronous and we can start
inverting it. If we’re right focused on a proposition that isn’t right synchronous,
we switch to inversion as well. Three rules model these conditions:

Γ ;∆/∆′;x:A ⇓ ⊢ x : A
(init)

Γ ;∆/∆′; · ⊢ M : A ⇑
Γ ;∆/∆′ ⊢ M : A ⇓

(⇓ R)

Γ ;∆/∆′;x : A ⇑ ⊢ M : C A not atomic and not left synchronous

Γ ;∆/∆′;x : A ⇓ ⊢ M : C
(⇓ L)

The rules presented above make the core of our synthesizer. As a proof system,
focusing is both sound and complete – a sequent is provable in the focused system
if and only if it is provable in linear logic. We note however, that proof search
in full linear logic is undecidable [12].

To illustrate the core synthesis framework, consider the goal A⊗B ⊸ B⊗A.
Starting focused on the goal, we can construct a derivation (i.e. a program) by
identifying the rules that are applicable at any given moment. If more than one
rule is applicable, we must make a non-determinisic choice, but focusing guar-
antees those choices are only required for ”true unknowns”. A derivation for
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this goal can be constructed by applying, from the bottom-up, ⊸R,⇑R,⊗L,⇑
L,⇑ L,decideR,⊗R, and then instantiating both the sub-goals B and A us-
ing ⇓ R,⇑ R,⇑ L,decideL, Init. Note that many of these rules don’t intrinsi-
cally change the proof, but are necessary in the proof-search procedure to elimi-
nate non-essential non-determinism. The program corresponding to the proof is
λx. let (a, b) = x in (b, a). We leave writing the derivation as an exercise.

3 Beyond Propositional Logic

By itself, the core synthesis process can only output simple non-recursive pro-
grams. In this section, we extend our framework to be able to synthesize more in-
teresting programs featuring general recursion over algebraic data types (ADTs)
and polymorphism. The combination of these features diverges from the pure
logical interpretation of focusing since unguarded general recursion is unsound
from a logical perspective (and decomposing ADTs through pattern matching is
uncommon in proof theory).

In its simplest form, an algebraic data type (ADT) is a tagged sum of any type
(i.e. a named type that can be instantiated by one of many tags, or constructors)
that take some value of a fixed type. In general, since the tagged types can be
products (A ⊗ B), or the unit (1), constructors can have an arbitrary fixed
number of parameters. The grammar of our core calculus is extended as (where
Cn is a constructor for values of some type T ):

M,N ::= . . . | Cn M | (case M of . . . | Cn u ⇒ N) τ, σ ::= . . . | T

Algebraic data types are related to the (⊕) type – both are forms of disjunction.
There is a right rule for each constructor of the data type, requiring only that
a term is synthesized for the argument of the constructor; and there is one left
rule to deconstruct a value of ADT type in the context by pattern matching,
requiring a term of the same type to be synthesized for each possible branch.
Naively, one might consider the rules:

Γ ;∆/∆′ ⊢ M : Xn ⇓
Γ ;∆/∆′ ⊢ Cn M : T ⇓

(adtR)

Γ ;∆/∆′
n;Ω, yn:Xn ⇑ ⊢ Mn : C yn /∈ ∆′

n ∆′
1 = ∆′

2 = · · · = ∆′
n

Γ ;∆/∆′
1;Ω, x:T ⇑ ⊢ case x of . . . | Cn yn → Mn : C

(adtL)

However, for recursively defined data types, i.e. for constructors that take as
an argument a value of the type they construct, a direct application of the rules
above will not terminate. Consider, for example, type T and its sole constructor
C1. When synthesizing a derivation for a goal T ⊸ D, for some D, we could
infinitely apply adtL:

. . .

Γ ;∆/∆′;Ω, y:T ⇑ ⊢ case y of C1 z → · · · : D
(adtL)

Γ ;∆/∆′;Ω, x:T ⇑ ⊢ case x of C1 y → · · · : D
(adtL)

Γ ;∆/∆′;Ω, x:T ⊢ · · · : D ⇑
(⇑ R)
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Symmetrically, the derivation for goal T is also infinite, since we can apply
adtR infinitely, never closing the proof:

(adtR)

(adtR)

(adtR)
. . .

Γ ;∆/∆′;Ω ⊢ C1 · · · : T ⇓
Γ ;∆/∆′;Ω ⊢ C1 · · · : T ⇓

Γ ;∆/∆′;Ω ⊢ C1 · · · : T ⇓

To account for recursively defined types, we restrict their decomposition when
synthesizing branches of a case construct, and, symmetrically, disallow construc-
tion of data types when trying to synthesize an argument for their constructors.
To model this, we use two more contexts, PC for constraints on construction and
PD for constraints on deconstruction. Together, they hold a list of data types
that cannot be constructed or deconstructed at a given point, respectively. For
convenience, they are represented by a single P if unused and all non-ADT rules
trivially propagate these. The ADT rules account for recursion as follows, where
P ′
C = PC , T if T is recursive and P ′

C = PC otherwise (P ′
D is dual):

(P ′
C ;PD);Γ ;∆/∆′ ⊢ M : Xn ⇓ T /∈ PC

(PC ;PD);Γ ;∆/∆′ ⊢ Cn M : T ⇓
(adtR)

(adtL)

(PC ;P ′
D);Γ ;∆/∆′

n;Ω, yn:Xn ⇑ ⊢ Mn : C yn /∈ ∆′
n T /∈ PD ∆′

1 = · · · = ∆′
n

(PC ;PD);Γ ;∆/∆′
1;Ω, x:T ⇑ ⊢ case x of . . . | Cn yn → Mn : C

These modifications block the infinite derivations described above. However,
they also greatly limit the space of derivable programs, leaving the synthesizer
effectively unable to synthesize from specifications with recursive types. To pre-
vent this, we add two rules to complement the restrictions on construction and
destruction of recursive types. First, since we can’t deconstruct some ADTs any
further due to these constraints, but must utilize all propositions linearly in some
way, all propositions in Ω whose deconstruction is restricted are to be moved
to the linear context ∆. Second, without any additional rules, an ADT in the
linear context will loop back to the inversion context, jumping back and forth
between the two contexts; instead, when focusing on an ADT, we should either
instantiate the goal (provided they’re the same type), or switch to inversion if
and only if its decomposition is not restricted:

(PC ;PD);Γ ;∆,x:T/∆′;Ω ⇑ ⊢ M : C T ∈ PD

(PC ;PD);Γ ;∆/∆′;Ω, x:T ⇑ ⊢ M : C
(adt⇑L)

(PC ;PD);Γ ;∆/∆′;x:T ⇑ ⊢ M : T T /∈ PD

(PC ;PD);Γ ;∆/∆′;x:T ⇓ ⊢ M : T
(adt⇓L)

Altogether, the rules above ensure that a recursive ADT will be deconstructed
once, and that subsequent equal ADTs will only be useable from the linear
context – essentially forcing them to be used to instantiate another proposition,
which will typically be an argument for the recursive call.
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To synthesize recursive functions, we can simply label the main goal as f
and extend the unrestricted context with the label f of the appropriate type.
That is, to synthesize a recursive function of type A ⊸ B named f, the initial
judgment can be written as

Γ, f :A ⊸ B;∆/∆′;Ω ⊢ M : A ⊸ B ⇑

and so all subderivations will have (f :A ⊸ B) available in Γ . However, we
must restrict immediate uses of the recursive call since otherwise every goal
would have a trivial proof (a non-terminating function that just calls itself),
shadowing relevant solutions. Instead, our framework allows the use of recursion
only after having deconstructed a recursive ADT, satisfying the invariant: the
recursive call can only be used in recursive branches of ADT deconstruction, i.e.
the recursive call should only take “smaller” terms as arguments. We also forbid
further recursive calls when synthesizing arguments for the recursive call itself.

Polymorphism. A polymorphic type, or a type scheme, is of the form ∀α. τ
where α is a set of variables that stand for (non-polymorphic) types in τ .

Synthesis for a scheme comprises of effectively removing the quantification,
and then treating its type variables uniformly. First, type variables are considered
atomic types, then, we instantiate the bound variables of the scheme as described
by the Hindley-Milner [16,9] type instantiation rule (put simply, generate fresh
names for each bound type variable); e.g. the scheme ∀α. α ⊸ α could be
instantiated to α0 ⊸ α0, for some fresh α0. We add such a rule to our system,
where ∀α. τ ⊑ τ ′ indicates type τ ′ is an instantiation of type scheme ∀α. τ :

P ;Γ ;∆/∆′;Ω ⊢ M : τ ′ ⇑ ∀α. τ ⊑ τ ′

P ;Γ ;∆/∆′;Ω ⊢ M : ∀α. τ ⇑
(∀R)

As such, the construction of a derivation in which the only rule that can derive
an atom is the init rule corresponds to the synthesis of a program where some
expressions are treated agnostically, i.e. a polymorphic program.

The main challenge of polymorphism in synthesis is the usage of schemes
from the unrestricted context. The context Γ now holds both (monomorphic)
types and schemes. Consequently, after the rule decideLeft! is applied, we are
left-focused on either a type or a scheme. Since left focus on a type is already
well defined, we need only specify how to focus on a scheme.

Our algorithm instantiates bound type variables of the focused scheme with
fresh existential type variables, and the instantiated type becomes the left focus.
Inspired by the Hindley-Milner system, we also generate inference constraints
on the existential type variables (postponing the decision of what type it should
be to be used in the proof), and collect them in a new constraints context Θ
that is propagated across derivation branches (by having an input and output
context (Θ/Θ′)). In contrast to Hindley-Milner inference, new constraints are
immediately solved against all other constraints – a branch of the search is
desired to fail as soon as possible. Note that we instantiate the scheme with
existential type variables (?α) rather than type variables (α) since the latter
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represent universal types during synthesis, and the former represent a concrete
instance of a scheme, that might induce constraints on other type variables.
Additionally, we require that all existential type variables are eventually assigned
a concrete type. These concepts are formalized with the following rules, where
∀α. τ ⊑E τ ′ means type τ ′ is an existential instantiation of scheme ∀α. τ ,
ftvE(τ

′) is the set of free existential type variables in type τ ′, ?α 7→ τx is a
mapping from existential type ?α to type τx, and unify(c,Θ) indicates whether
constraint c can be unified with those in Θ:

Θ/Θ
′
;P ;Γ ;∆/∆

′
; τ

′ ⇓ ⊢ M : C ∀α. τ ⊑E τ
′

ftvE(τ
′
) ∩ {?α | (?α 7→ τx) ∈ Θ

′} = ∅
Θ/Θ

′
;P ;Γ ;∆/∆

′
; ∀α. τ ⇓ ⊢ M : C

(∀L)

unify(?α 7→ C,Θ)

Θ/Θ, ?α 7→ C;P ;Γ ;∆/∆
′
; x:?α ⇓ ⊢ x : C

(?L)
unify(?α 7→ A,Θ)

Θ/Θ, ?α 7→ A;P ;Γ ;∆/∆
′
; x:A ⇓ ⊢ x :?α

(⇓?L)

4 Evaluation

We implemented our framework both as a Haskell GHC plugin and as a stan-
dalone synthesizer that can typecheck Haskell-like programs with “goal signa-
tures” for which valid expressions are synthesized. We’ve tested and bench-
marked both implementations on numerous synthesis challenges with success-
ful results. Among the more intricate examples, we can easily synthesize the
Monad instances of Maybe and State. However, the more interesting result is a
real-world example from [2]: with linear types one can provide a safe interface
to manipulate mutable arrays. Linear Haskell [2] provides an implementation of
array :: Int → [(Int, a)] → Array a which, internally, uses mutable arrays using:

newMArray :: Int → (MArray a ⊸ Ur b) ⊸ b
write ::MArray a ⊸ (Int, a) → MArray a
read ::MArray a ⊸ Int → (MArray a,Ur b)
freeze ::MArray a ⊸ Ur (Array a)

The flagship result from our synthesis framework, which also illustrates the pre-
ciseness of linear types, is that we’re able to synthesize the exact implementation
of array given in Linear Haskell given the above interface and the array type goal,
all in a hundred milliseconds:

array size pairs = newMArray size (λma → freeze (foldl write ma pairs))

The standalone implementation further supports (experimentally) refinement
types and additional synth guidelines. Figure 1 lists benchmarks for a suite of
examples. The Goal column describes the type of the synthesized term using
typical Haskell terminology. The Keywords column denotes the use of additional
synthesis guidance features that we implemented in our synthesizer: the choose
keyword instructs the synthesizer to stop after one valid term is found, the equal-
ity clause in the list reverse function serves as an input output example that
guides the search, the depth keyword controls the instantiation depth of quan-
tifiers. The Components column describes the library of function (signatures)
provided for the particular synthesis goal.
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Group Goal Avg. time ±σ Keywords Components

Linear
Logic

uncurry 133µs ± 4.9µs
call by name 196µs ± 4.6µs

0/1 294µs ± 5.3µs

List

map 288µs ± 7.2µs
append 292µs ± 7.0µs
foldl 1.69ms ± 5.3µs choose 1
foldr 704µs ± 10µs
concat 505µs ± 18µs
reverse 17.4ms ± 515µs reverse [1,2] == [2,1]

Maybe
>>= 194µs ± 5.3µs
maybe 161µs ± 4.8µs

State

runState 190µs ± 6.8µs
>>= 979µs ± 23µs
>>= ∞ using (runState)
get 133µs ± 3.8µs
put 146µs ± 3.4µs

modify 219µs ± 4.9µs
evalState 156µs ± 4.0µs

Misc either 197µs ± 5.3µs

Array
depth 3 freeze, foldl

array 4 80ms ± 870µs using (foldl),depth 3 newMArray,write
Refinements add3 39ms ± 1.1ms +

Fig. 1. Benchmarks

5 Related Work

Type-based program synthesis is a vast field of study. Most works [10,19,17,8]
follow some variation of the synthesis-as-proof-search approach. Focusing in syn-
thesis appeared first in the literature in [13]. Each synthesis framework differ due
to a variety of rich types explored and their corresponding logics and languages.

The work [19] also studies synthesis of recursive functional programs in an
“advanced” context. Their specifications combine two rich forms of types: poly-
morphic and refinement types. We also support refinements (and polymorphism),
but they are not as integrated in the synthesis process as in [19]. Instead, our
synthesizer leverages the expressiveness of linear types and techniques for proof-
search in linear logic to guide its process.

The work [10] synthesizes programs using an approach similar ours. It em-
ploys so-called graded modal types, which are a refinement of pure linear types
that allows for a quantitative specification of resource usage, in contrast to ours
either linear or unrestricted (via the linear logic exponential) use of assump-
tions. Their resource management is thus more complex than ours. They also
use focusing as a solution to trim down search space and to ensure that synthe-
sis only produces well-typed programs. However, since their underlying logic is
modal rather than purely linear, it lacks a clear correspondence with concurrent
session-typed programs [4,3], which is a crucial avenue of future work. Moreover,
their use of grading effectively requires an SMT solver to be integrated with the
synthesis procedure, which can limit the effectiveness of the overall approach. Ad-
ditionally, our system extends the focusing-based system with recursion, ADTs,
polymorphism and refinements to synthesize more expressive programs.
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